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Abstract:  The paper focuses on derivation of fifth order hybrid linear multistep block method (HLMBM) for the solution of 

fourth order initial value problems (IVPs) in ordinary differential equations (ODEs). We demonstrate the 

possibility of direct integration of fourth order boundary value problems using the HLMBM. Collocation technique 

is adopted in the derivation of the HLMBM which is applied as simultaneous integrator to fourth order initial and 

boundary value problems. The HLMBM possesses the desirable feature of being self-starting as the 

implementation is in block form. Numerical examples are included to demonstrate the validity and applicability of 

the proposed OLMBM and comparisons are made with the exact solution to show the desirability of the method. 
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Introduction 

The general mth-order initial and boundary value problems are 

of the form  

),...,,,()( 1'  mm yyyxfxy  

Subject to either initial conditions or boundary conditions. 

In this paper, we focus specifically on case m = 4, that is the 

fourth order differential equation 

)1(),,,,()( '''''' yyyyxfxy iv   

Subject to the initial conditions 

00000000 )(''',)('',)(',)( exydxybxyaxy   

or the boundary conditions 

NNNN exydxybxyaxy  )(,)(,)(',)( 0000  

and formulate one-step self-starting continuous hybrid linear 

multistep method of the form 
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Where: 0,1  kk   and k = 1 is the step number. 

 

Equation (1) has many applications in engineering, science 

and management such as the bending of an elastic beam 

which is described with a fourth-order boundary value 

problem, the reaction and diffusion of chemicals, the 

dynamics of populations in biology, the development and 

treatment of diseases in medicine, molecular dynamics, the 

motion of rocket and several other areas. So, the demand for 

the solution of differential equations  

(DEs) is on the increase as the quest for numerical methods 

has increasingly been of much interest to researchers owing to 

the fact that most of these DEs are difficult to solve or their 

analytical solutions do not exist.  

The approach of reducing (1) to a system of first order 

differential equations and then applying the various methods 

available for solving systems of first order Initial Value 

Problems (IVPs) has been extensively discussed in the 

literature (Adesanya et al., 2012; Butcher, 2008; Lambert, 

1991; Henrici, 1962; Hairer et al., 1993; Dormand, 1996). 

This approach had been reported to increase the number of 

equations four times and thereby more function evaluations 

need to be evaluated as this result to a longer execution time 

and more computational effort (Jator, 2008; Awoyemi et al., 

2011; Waeleh et al., 2012; Mehrkanoon, 2011). Moreover, 

Bun and Vasil’yer (1992) reported that the system of 

equations to be solved when the method of reduction is 

applied cannot be solved explicitly with respect to the 

derivatives of the highest order. 

Awoyemi (2003, 2005), Kayode (2008a, 2008b) succeeded in 

applying numerical algorithm to directly solve a general 

fourth order initial value problems of the form (1).  However, 

all these methods were implemented in predictor-corrector 

mode and hence, according to Jator (2008), the 

implementation of such schemes is more costly since the 

subroutines for incorporating the starting values lead to 

lengthy computational time. Besides, they advance the 

numerical integration of the ordinary differential equations in 

one-step at a time, which leads to overlapping of the 

piecewise polynomials solution model (Yusuph, 2004). To 

address the setback of the predictor-corrector method; Vigo-

Aguiar and Ramos (2006), Jator (2007), Yap and Ismail 

(2015), Costabile and Napoli (2015), Hussain et al. (2016), 

among others independently proposed block method for 

solving higher order ordinary differential equation which does 

not require the development of separate predictors but 

simultaneously generate approximation at different grid points 

within the interval of integration without overlapping as 

experienced in the predictor-corrector method.  

The aim of developing new methods has always been to 

improve on the efficiency and convergence of existing 

methods with the ultimate aim of reducing the error of 

approximation.   

Thus, in what immediately follows, we shall formulate one-

step method to directly integrate fourth order initial value 

problem and subsequently, the implementation shall be 

extended to boundary value problems as well.  

Derivation of HLMBM 

We assume an approximate solution of the form  

1,)(
0




ksnxaxy
n

r

r

r  (2) 

Where x [xi, xi+j], the number of interpolation points used s 

≥ 4 and k ≥ s where k is the number of collocation points. 

 

 

 

Supported by

 
 

http://www.ftstjournal.com/
mailto:adeoluman@yahoo.com


IVPs and BVPs Solvers 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; April, 2017: Vol. 2 No. 1B pp. 365 – 371 

 

366 

Interpolating and collocating at snxx  , 
2
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 respectively gives a system of equations 

needed to be used in determining the unique values of 8)1(0, rar
 written as  

AX = R   (3)  

where 
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Solving for sar

,
, 8)1(0r  in (3) and substituting the resulting equations in (2), the continuous equation is obtained as 
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where s and k are parameters to be determined. 

 

 

Evaluating (4) at 1 nxx , we have 
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 (5) 

 

 

 

 

 

 

 

 

 

http://www.ftstjournal.com/


IVPs and BVPs Solvers 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; April, 2017: Vol. 2 No. 1B pp. 365 – 371 

 

367 

Evaluating the first, second and third derivatives of (4) at 1,
2

1
,

3

1
,

4

1
,0,   kxx kn

 and solving the resulting equations 

and (5) simultaneously gives a discrete block formula in the form 
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Analysis of the basic properties of the Method  

Order of the HLMBM 

Following Henrici (1962), the approach adopted in Fatunla (1991, 1994) and Lambert (1973), we define the local truncation 

error associated with equation (6) by the difference operator  
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where )(xy  is an arbitrary function, continuously differentiable on [a, b].  

Expanding (7) in Taylor series about the point x, we obtain the expression 
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where the 0C  ,  
1C  , 

2C , pC , are obtained as  
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In the spirit of Lambert (1973), equations (5) and (6) are of order p if  

0... 3210  pp CCCCC  and 04 pC  

The 04 pC  is called the error constant and )(44

4 n

pp

p xyhC 

  is the principal local truncation error at the point nx . 

According to the definition above, equations (5) and (6) are all of order 5 with the error constants  
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respectively. 

With the order p = 5 > 1, we establish the consistency of the method (Jator, 2008;Henrici, 1962). 

The first characteristic polynomial of the hybrid block method (6) is given by   

)det()( 10 ARAR       (8) 

where
0A is 16 by 16 identity matrix and 
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Substituting  
0A  and  

1A  in (8), we obtain )1()( 412  RRR . 
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According to Fatunla (1988, 1991), the method is zero-stable since 0)( R  satisfies 1jR , 1j  and for those roots 

with 1jR , the multiplicity does not exceed four. 

Region of absolute stability of HLMBM 

For the region of absolute stability, the following definitions are considered. 

Given the stability polynomial  

  0)()(,  zhzhz        (9) 

where
22hh   and 

dy

df
  are assumed constants. 

The scheme (6) is said to be absolutely stable if for a given h  all the roots sz  of (9)  

satisfy 1sz , s=1,2,…n,   where  hh   

Definition 1.1: The region   of the complex h -plane such that the roots of   0, hz  lies within the unit circle whenever 

h lies in the interior of the region is called the region of absolute stability. 

Remark: Let   be the boundary of the region . Since the roots of the stability polynomial are continuous functions of h ,  

h  will lie on   when one of the roots of the    0, hz  lies on the boundary of the unit circle. Thus we define (9) in terms 

of Euler’s number, iexp , as follows; 

0))(exp()(exp()),(exp(   ihihi  (10) 

So that, the locus of the boundary   is given by  
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From (5), the boundary of the region of absolute stability is 
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and the region of absolute stability (RAS) is shown in Figure 5. 

 
 

Implementation of HLMBM as a block as well as a block unification method 

Implementation of HLMBM 

We implement the HLMBM using a written code in Mathematica 10.0 enhanced by the features NSolve[  ] for linear problems 

and FindRoot[  ] for nonlinear problems respectively. In what follows, we summarize how HLMBM is applied to solve initial 

value problems (IVPs) in a block-by-block fashion as well as applied to solve boundary value problems (BVPs) via a block 

unification technique. 

IVPs-Block-by-block algorithm 

Step 1: Choose N, ,
)( 0

N

xx
h N 
  on the partition QN. 
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Step 2: Solve for the values of 

T

vsrvsrvsrvsr yyyyyyyyyyyyyyyy ],,,,,,,,,,,,,,,[ '''
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1  

 simultaneously on the sub-interval [x0, x1] as n = 0, 
''

0
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00 ,, yyy , and 
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0y  are known from the IVPs (1) and 
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1
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4

1
{},,{ vsr . 

Step 3: For n = 1, generate the variables 
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 and obtain their values by solving simultaneously on the sub-interval [x1, x2] as
''

1

'

11 ,, yyy , and 
'''

1y are known from 

the previous block. 

Step 4: Repeat the process for n = 2, . . . ,N - 1 to obtain the numerical solution to (1) on the sub-intervals [x0, x1], [x1, x2], . . . , 

[xN-1, xN]. 

BVPs-Block unification algorithm 

Step 1: Choose N, ,
)( 0

N

xx
h N 
  on the partition QN. 

Step 2: For n = 0, generate the variables 

T
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Step 3: For n = 1, generate the variables 
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 on the sub-interval [x1, x2] and do not solve yet. 

Step 4: Repeat the process for n = 2, . . . ,N - 1 until all the variables on the sub-intervals [x0, x1], [x1, x2], . . . , [xN-1, xN] are 

obtained. 

Step 5: Create a single block matrix equation by the unification of all the blocks generated in Step 2 and Step 3 on QN. 

Step 6: Solve the single block matrix equation to simultaneously obtain all the solutions for (1) on the entire [x0, xN]. 

 

Numerical examples 

The effectiveness of the HLMBM is investigated by solving 

four test problems. Two IVPs and two BVPs are considered to 

test the performance of our method. All computations were 

carried out using our written Mathematica code in 

Mathematica 10.0.  

Figures 1 – 4 show the comparison of the solution using the 

new numerical method HLMBM and the exact solution.  

Problem 1: Consider the linear fourth order IVPs (Jator, 

2008) 

20,30)0(''',0)0('')0(')0(,2''''''  tyyyyyyyyy iv  

whose theoretical solution is y(t) = 2e2t - 5e-t + 3cost – 9sint. 

 

 
 

Problem 2: Consider the nonlinear fourth order IVPs 
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The problem is integrated in the interval ]
4

,0[
 . The exact 

solution is given by y(x) = arcsin(x). 

 
 

Problem 3: We consider the BVPs 
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 The exact solution is given by
tetty )1()(  . 
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Problem 4: We consider the following nonlinear BVPs 
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The exact solution is given by 245 22)( xxxxy   

The problem is integrated in the interval [0, 1]. 

 

 
 
Conclusion 

The derivation of one-step block algorithm which is applied as 

simultaneous numerical integrator of fourth order initial value 
problems over non-overlapping intervals has been demonstrated. The 

method is implemented in block and extended block forms. Solutions 
of numerical experiments performed using HLMBM are shown in 

Figures 1-4 and these show that the method conveniently integrates 

both IVPs and BVPs of fourth order. In our future paper, we shall 
extend the method to solve partial differential equation through the 

method of lines. 
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